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Abstract
Based on the theory of unitary matrices, our treatment of the theory of quantum
random walks simplifies and clarifies certain prior derivations based on Fourier
transform methods. Given a quantum random walk on the line determined by
a 2× 2 unitary matrix U, we show how the first two moments of the position
probability distribution are determined by the eigenvalues of U. By varying the
‘coin operator’ A, we show that the leading term of the standard deviation of
the position probability distribution is ct , where t denotes time and 0 � c � 1.
However, it turns out that the maximum value of c, namely c = 1, is achievable
when and only when the coin operator A is diagonal, and the initial state is
unbiased. Starting in the classical state |0〉 ⊗ |1〉, our approach confirms that
the maximum value of the leading term of the standard deviation of the position
probability distribution is t

2 , which, by way of known examples, is verified to
be achievable.

PACS numbers: 05.30.−d, 03.67.Lx, 05.40.Fb, 02.50.Cw

1. Introduction

Some important algorithms in classical computation theory are based on the theory of classical
random walks. Analogously, quantum random walks (henceforth abbreviated as QRW) on
discrete lattices are of interest relative to the emerging field of quantum computation. The aim
is to develop quantum analogues to the classical (non-quantum) theory. Recently, quantum
random walks on the line have been investigated by a number of researchers in connection
with the theory of quantum computing. We refer to Kempe [4] for an excellent overview.

A fundamental difference in behavior between classical and quantum random walks
on the line is evidenced by the longrun-dependence on time t of the standard deviation
σ(Xt) =

√
E

(
X2

t

) − [E(Xt)]2 of the position probability distribution. Unlike classical
random walks whose position probability distribution is essentially Gaussian, and therefore
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spread with velocity
√

t , the analogous distribution for a QRW can spread quadratically faster
[1–3, 5–7].

In their analysis of quantum processes, the authors of [1, 2] employ the Schrödinger
approach to obtain a description of the wave function in terms of Fourier-type integrals. They
specify the leading terms of the first two moments of the position probability distribution in
the longrun time limit for Hadamard walks, but stop short of presenting a clear derivation for
the standard deviation of a general QRW on the line. In [3, 5] the authors present a closed
expression, based on combinatorial arguments, for the rth moment of the position probability
distribution, but the dependence on t of the standard deviation is not explicitly addressed. In
[6], by way of Fourier transform methods, the authors obtain a closed formula for the rth
moment of a QRW.

In this paper, we invoke some elementary analytic properties of 2 × 2 unitary matrices
to derive improved versions of the closed formulae given in [6] for the first two moments of
the position probability distribution. For a QRW, we demonstrate that the maximum value
of the leading term of σ(Xt) is t. However, this optimum value is attainable if and only if
the coin operator A is diagonal and the initial state is unbiased. Also, we demonstrate the
existence of an ample class of QRWs with non-trivial position probability distribution; the
value of the leading term of whose standard deviation σ(Xt) is arbitrarily close to t. For
a QRW starting in classical state |0〉 ⊗ |1〉, we show that the leading terms of the first two
moments of the position probability distribution are determined uniquely by the eigenvalues
of the corresponding unitary matrix U. In particular, for a QRW on the line starting in classical
state |0〉⊗|1〉, we confirm that the maximum value of the leading term of the standard deviation
σ(Xt) of the position probability distribution is t

2 . We offer some examples to illustrate the
conditions under which this maximum value is achievable.

From this point forward, the remainder of this paper is organized as follows. In section 2,
we offer a brief review of the relevant methods and results due to previous authors. In
section 3, we investigate some basic analytic properties of unitary matrices as they pertain to
the theory of QRWs on the line. In section 4, we derive clear and simple expressions for the
first two moments of the position probability distribution of a QRW on the line. For clarity of
exposition, proofs and details of some calculations are deferred to the appendix.

2. Related work

For a QRW on the line, the position space is the Hilbert space Hp spanned by an orthonormal
basis {|x〉; x ∈ Z}. The coin space is the Hilbert space Hc spanned by an orthonormal basis
{|j 〉; j = 1, 2.}. The ‘state space’ is H = Hc ⊗ Hp. Thus, a typical state ψ in H may be
expressed as

ψ =
∑
x∈Z

∑
j=1,2

ψ(x, j)|x〉 ⊗ |j 〉.

To introduce the evolution operator of a QRW on a line, we begin with a shift operator
and a coin operator. The shift operator S : H → H is defined by S(|x〉⊗|j 〉) = |x + 1〉⊗|j 〉,
if j = 1; S(|x〉 ⊗ |j 〉) = |x − 1〉 ⊗ |j 〉, if j = 2. Meanwhile, the coin operator A : Hc → Hc

can be any unitary operator. Accordingly, the evolution operator is defined by U = S(I ⊗ A),
where I denotes the identity operator on Hp.

Given ψ0 ∈ H and ψt = Utψ0, then the sequence {ψt }∞0 models the temporal evolution
of a QRW on the line with initial state ψ0.
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Let X denote the position operator on the position space Hp, so that X|x〉 = x|x〉. Given
a QRW with ψt = ∑

x∈Z

∑
j=1,2 ψt(x, j)|x〉 ⊗ |j 〉, where t denotes time, then the probability

pt(x) of finding the particle at the position x at time t is given by the standard formula

pt(x) =
∑

j

|ψt(x, j)|2.

Thus, at every instant t, the eigenvalues of the operator Xt
.= U †tXUt equate to the possible

values of the particle’s position with corresponding probability pt(x).
Until further notice, let Hc ⊗L2([0, 2π)) serve as the state space, sometimes also referred

to as the k-space, and let ψ = ∑
x∈Z

∑
j=1,2 ψ(x, j)|x〉 ⊗ |j 〉 ∈ H.

Let ψ(x) = (ψ(x,1)

ψ(x,2)

)
, and let ψ(k) = (ψ(k,1)

ψ(k,2)

) = ∑
x∈Z ψ(x) eikx denote the Fourier

transform of (ψ(x)).
Then we have

ψ(x) =
∫ 2π

0
e−ikxψ(k)

dk

2π
,

and

〈ψ, φ〉 =
∑
x∈Z

∑
j=1,2

ψ̄(x, j)φ(x, j) =
∑
j=1,2

∫ 2π

0
ψ̄(k, j)φ(k, j)

dk

2π
.

By definition,

S

(
ψ(x, 1)

ψ(x, 2)

)
=

(
ψ(x + 1, 1)

ψ(x − 1, 2)

)
,

so that

S

(
ψ(k, 1)

ψ(k, 2)

)
=

(
eikψ(k, 1)

e−ikψ(k, 2)

)
.

Therefore,

Uψ =
(

eik 0
0 e−ik

)
A

(
ψ(k, 1)

ψ(k, 2)

)
= U(k)ψ(k).

Thus, in k-space, the QRW may be modeled by the formula

ψt(k) = U(k)tψ0(k).

In [6], using Fourier transform methods, Grimmett et al derived formulae for the rth
moments of the position probability distribution. A brief statement of their main result is
displayed below. For a more detailed account, the reader is advised to refer to [6].

Let D = −id/dk denote the position operator in k-space. Assuming that all moments
E

(
Xr

0

)
of the initial state ψ0 are finite, then, as t → ∞, the rth moment of the position

probability distribution is given by

E[(Xt/t)r ] =
∫ 2π

0

∑
j

(
Dλj(k)

λj (k)

)r

|〈vj (k), ψ0(k)〉|2 dk

2π
+ O(t−1),

where λ1(k) and λ2(k) denote the eigenvalues of U(k), and v1(k) and v2(k) denote the
corresponding orthonormal eigenvectors. Accordingly, the value of the leading term of the
rth moment is t r

∫ 2π

0

∑
j

(Dλj (k)

λj (k)

)r |〈vj (k), ψ0(k)〉|2 dk
2π

.
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3. Formulation of the evolution operator based on unitary matrices

In what follows, we denote by λ the complex conjugate of a complex number λ, by |a| the
modulus of a complex number a, and by |A| the determinant of a matrix A. For xT and yT in
C2, the inner product is defined by 〈xT , yT 〉 = 〈(x1, x2)

T , (y1, y2)
T 〉 = x1y1 + x2y2.

For a unitary matrix

A =
(

a b

c d

)
with determinant |A| = eiθ ,

where a, b, c and d are complex constants, and θ is a real constant, set

U(k) =
(

eik 0
0 e−ik

)
A =

(
a eik b eik

c e−ik d e−ik

)
.

Then, for each value of k,U(k) has two eigenvalues λ1(k) and λ2(k), with |λj (k)| = 1,

whose corresponding unit eigenvectors v1(k) = (
v1

1, v
2
1

)T
and v2(k) = (

v1
2, v

2
2

)T ∈ C2

constitute an orthonormal basis for the k-space. To aid in the proof of the main result,
we proceed to collect some basic facts about unitary matrices U(k). The proofs are quite
elementary, and are deferred to the appendix.

Proposition 1. The eigenvalues {λj (k)}2
j=1 of U(k) are C∞ functions of k, as are the

corresponding eigenvectors {vj (k)}2
j=1.

Henceforth, for simplicity of notation, the explicit dependence on the parameter k of the
quantities U, {λj }2

j=1, {vj }2
j=1 and the initial state ψ0 will be suppressed.

Proposition 2. As above, let D = −id/dk denote the position operator. If u and w are two
vectors in C2 with differentiable components, then D(〈u,w〉) = 〈u,Dw〉 − 〈Du,w〉.
Corollary 1. If v1 and v2 are eigenvectors of U, then

(i) 〈vj ,Dvj 〉 = 〈Dvj , vj 〉;
(ii) 〈v1,Dv2〉 = 〈Dv1, v2〉.

As seen above, the expression λDλ acts as an essential ingredient in the formulae for
the moments of position probability distribution. The next two propositions capture some
fundamental features of the expression λDλ.

Proposition 3. If λ1 and λ2 are eigenvalues of U, then λ1Dλ1 = −λ2Dλ2.

Proposition 4. If λ is an eigenvalue and v is a corresponding unit eigenvector of U, then
λDλ = 2|〈v, ε1〉|2 − 1 = 1 − 2|〈v, ε2〉|2, where ε1 = (1, 0)T and ε2 = (0, 1)T .

By proposition 4, |λDλ| � 1. In particular, when |λDλ| ≡ 1 or λDλ ≡ 0, then the
shape of the coin operator matrix A is either diagonal or anti-diagonal, and we are faced with
a ‘trivial’ scenario. The next two propositions pertain to the special cases where λDλ ≡ 0 or
λDλ ≡ ±1.

Proposition 5. For an eigenvalue λ of the matrix U, the following three statements are
equivalent:

(i) λDλ ≡ 0,
(ii) A = (0 b

c 0

)
,

(iii) U possesses eigenvalues ei θ
2 and −ei θ

2 which are independent of the parameter k.

4
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Proposition 6. For an eigenvalue λ of the matrix U, the following three statements are
equivalent:

(i) λDλ ≡ ±1,
(ii) A = (

a 0
0 d

)
,

(iii) U possesses eigenvalues aeik and de−ik .

Note that if A is a Pauli matrix, then either λDλ ≡ 0 or |λDλ| ≡ 1. When λDλ ≡ 0,
the motion of the particle remains confined. When |λDλ| ≡ 1, the motion is completely
decoupled into ballistic right drifting (spin-up) or left drifting (spin-down) states.

4. The SD and the first two moments of a QRW on the line

Based on the approach described in the previous section, we offer simplified versions of the
formulae given in [6] for the first two moments of the position probability distribution of the
QRW on the line. A rather simple expression emerges for the leading term of the standard
deviation (SD), which permits us to specify explicitly its maximum value.

For simplicity, we may assume henceforth, without loss of generality, that the QRW is
launched at the origin. Thus the initial state in k-space possesses the form ψ0 = α1ε1 + α2ε2.
We begin by presenting an explicit formula for the first moment of the position probability
distribution. This formula refines the formula given in [6].

Proposition 7. If the QRW starts in the initial state ψ0 = α1ε1 + α2ε2, then the first moment
of the position probability distribution is given by

E(Xt) =
∫ 2π

0
〈ψt,Dψt 〉 dk

2π
,

where 〈ψt,Dψt 〉 = t
[
(2|α1|2 − 1)λ1Dλ1 + 4 Re

(
α1α2v

1
1v

2
1

)]
λ1Dλ1 + 2 Re

{[
λt

1(λ2)
t −

1
]〈v2, ψ0〉〈v1, ψ0〉〈v2,Dv1〉

}
.

If the QRW starts in the classical state |0〉 ⊗ |1〉, then ψ0 = ε1, in which case the formula
for E(Xt) simplifies as follows.

Corollary 2. If the QRW starts in the classical state |0〉⊗|1〉, then the first moment of position
probability distribution is given by

E(Xt) = t

∫ 2π

0
(λ1Dλ1)

2 dk

2π
+

∫ 2π

0
2 Re

{[
λt

1(λ2)
t − 1

]〈v2, ψ0〉〈v1, ψ0〉〈v2,Dv1〉
} dk

2π
.

Next, let us recall the formula for the second moment of the position probability
distribution given in [6] by Grimmett et al:

E
(
X2

t

) = t2
∫ 2π

0

∑
j

(
Dλj

λj

)2

|〈vj , ψ0〉|2 dk

2π
+ O(t).

A simplified version of this formula is obtained by applying proposition 3. Interestingly,
as noted by Konno in [3, 5] and Endrejat and Büttner in [8], the second moment of the position
probability distribution turns out to be independent of the initial state of the QRW.

Proposition 8. If the QRW starts in the initial state ψ0, then the second moment of the position
probability distribution is given by

E
(
X2

t

) = t2
∫ 2π

0
(λ1Dλ1)

2 dk

2π
+ O(t).

5
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Finally, we are ready to consider the standard deviation σ(Xt) of the position probability
distribution for a QRW on the line. The following theorem provides information about the
upper and lower bounds of the leading term of the standard deviation σ(Xt). In particular, it
specifies conditions under which these bounds are sharp.

Theorem 1. For a QRW on the line, with coin operator A and initial state ψ0, an upper
bound for the leading term of σ(Xt) is t. The leading term of σ(Xt) is identically equal to t
if and only if the coin operator A is of diagonal format and the initial state is unbiased, i.e.
ψ0 = α1ε1 + α2ε2 with |α1| = |α2| =

√
2

2 . At the other extreme, if the coin operator A is of
anti-diagonal format, i.e. λ1Dλ1 ≡ 0, then, independent of the initial state ψ0, the leading
term of σ(Xt) degenerates to O(

√
t).

According to theorem 1, the leading term of σ(Xt) is identically equal to t when and only
when the position probability distribution is ‘trivial’ in the sense that the particle is observed
at time t to occupy positions t and −t with equal probability 1

2 . However, by varying the coin
operator A, we can find examples (see below) of non-trivial QRWs having coin operators A

that are neither diagonal nor anti-diagonal, such that the leading term of σ(Xt) is arbitrarily
close to t. We cannot, at this time, completely rule out the existence of a non-trivial QRW
whose leading term degenerates to O(

√
t). However, if the QRW commences in the classical

state |0〉 ⊗ |1〉, then, according to the following theorem and its corollaries, the leading term
of σ(Xt) of any non-trivial QRW cannot degenerate to O(

√
t).

Theorem 2. If the QRW starts in the classical state |0〉⊗ |1〉, then the variance of the position
probability distribution is given by

σ 2(Xt ) = t2

{∫ 2π

0
(λ1Dλ1)

2 dk

2π
−

[∫ 2π

0
(λ1Dλ1)

2 dk

2π

]2
}

+ O(t).

Corollary 3. If the QRW starts in the classical state |0〉⊗|1〉, then the variance σ 2(Xt ) = O(t)

if and only if λ1Dλ1 ≡ 0 or λ1Dλ1 ≡ ±1.

In other words, the QRW spreads with the same level velocity O(
√

t) as does a classical
random walk if and only if the motion of the particle on the line either is confined to a finite
interval or drifts monotonically to the right.

Corollary 4. If the QRW starts in the classical state |0〉 ⊗ |1〉, then the maximum value of the
leading term of σ 2(Xt) is 1

4 t2 if and only if
∫ 2π

0 (λ1Dλ1)
2 dk

2π
= 1

2 .

The following example shows that
∫ 2π

0 (λ1Dλ1)
2 dk

2π
= 1

2 , as in corollary 4, is achievable,
so that the corresponding QRW spreads at the highest possible velocity given by σ(Xt) =
1
2 t + O(1).

Consider a QRW with coin operator matrix

A(β) =
(

cos β sin β

sin β −cos β

)
,

where β ∈ [
0, π

2

]
, and with corresponding evolution operator

U(k) =
(

eik cos β eik sin β

e−ik sin β −e−ik cos β

)
.

By straightforward calculation, the eigenvalues are

λj (k) = ±
√

1 − cos2 β sin2 k + i cos β sin k,

6
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so that

λ1Dλ1 = (cos β cos k)/(
√

1 − cos2 β sin2 k), and
∫ 2π

0
(λDλ)2 dk

2π
= 1 − sin β.

Depending on the initial state of the QRW, we have two cases:

Case 1. Suppose the initial state is the classical state |0〉 ⊗ |1〉. Then, by theorem 2,
the variance σ 2(Xt) = t2(1 − sin β) sin β + O(t), so the standard deviation is σ(Xt) =
t
√

sin β(1 − sin β) + O(1). When β = π
6 , the leading term of the standard deviation of

the corresponding QRW attains the maximum value 1
2 t . When β = π

4 , then the coin
operator matrix is the Hadamard matrix, and the leading term of the standard deviation is
t
√

(
√

2 − 1)/2. A similar result can be found in Nayak and Vishwanath [1], Ambainis et al
[2], and Konno [3, 5].

Case 2. Suppose the initial state is ψ0 = α1ε1 + α2ε2, where, for simplicity, both α1 and α1

are assumed to be real. After some laborious, though straightforward, calculations, the unit
eigenvector of λ1 becomes(

v1
1

v2
1

)
= 1√

N(k, β)

(
eik

λ1−eik cos β

sin β

)
,

where the normalization factor is given by

N(k, β) = (2 − 2
√

1 − cos2 β sin2 k cos β cos k − 2 cos2 β sin2 k)/ sin2 β,

so that [
Re

(
α1α2v

1
1v

2
1

)]
λ1Dλ1 = (α1α2 cos β sin β cos2 k)/2(1 − cos2 β sin2 k).

Therefore ∫ 2π

0

[
Re

(
α1α2v

1
1v

2
1

)]
λ1Dλ1

dk

2π
= (α1α2 sin β(1 − sin β))/(2 cos β).

Finally, by proposition 7, we have

σ 2(Xt ) = t2(1 − sin β) − t2[(2|α1|2 − 1)(1 − sin β)

+ (2α1 sin β(1 − sin β)
√

1 − |α1|2)/ cos β]2 + O(t).

Now, set α1 =
√

2
2 . Then σ 2(Xt ) = t2(1− sin β)− t2(1− sin β)2 tan2 β + O(t). By taking

values of β sufficiently close to 0, we see that the corresponding values of σ 2(Xt ) can come
arbitrarily close to t2. Since β 	= 0, the corresponding coin operator A is not diagonal and the
QRW is not trivial. Under these conditions, it seems reasonable to believe that there are two
regions at the extreme zones of the walk in which the particle is most likely to be found.

5. Conclusion

We have shown that the maximum value of the leading term of σ(Xt) is t. This maximum
value is reached if and only if the coin operator A is diagonal, and the initial state is unbiased.
However, the position probability distribution of this QRW is not terribly interesting. It may be
useless in designing quantum algorithms. Fortunately, as the above example assures us, QRWs
exist with non-trivial position probability distributions and large enough standard deviations.

One rather evident fact is that if the coin operator A is of anti-diagonal type, then,
regardless of the initial state ψ0, the σ(Xt) = O(

√
t) which is the same order as the classical

random walks. This evidence casts some doubt on the widespread notion that QRWs generally
spread quadratically faster than their classical counterparts. The question might be worth
investigating, whether a non-trivial QRW exists such that σ(Xt) = O(

√
t).

7



J. Phys. A: Math. Theor. 41 (2008) 355306 C Liu

Acknowledgments

The author especially thanks Nelson Petulante for his constructive suggestions and assistances
when this paper was being written. The author also would like to thank Roman Sznajder and
Wei-Shih Yang for their help and encouragement. This work was supported by a mini-grant
from Project HBCU-UP/BETTER at Bowie State University.

Appendix

Proof of proposition 1. To justify the first one, we note that λ1,2(k) = (eika + e−ikd ±√
(eika + e−ikd)2 − 4 eiθ )/2. It is easy to see that (eika + e−ikd)2 − 4 eiθ = 0 for some

k only if |a| = |d| = 1. In this case λ1(k) = eika, and λ2(k) = e−ikd, they are C∞.
Otherwise, if (eika + e−ikd)2 − 4 eiθ 	= 0 for every k, then the graph of the C∞ function,
(eika + e−ikd)2 − 4 eiθ , entirely lies inside of the circle centered at 4 eiθ with radius 4. In this
case

√
(eika + e−ikd)2 − 4 eiθ is C∞, therefore {λj (k)}2

j=1 are also C∞. The justification of
the second claim is trivial.

Proof of proposition 2. D[〈u,w〉] = D(uw) = −i
( d(uw)

dk

) = −i
(
w du

dk
+ u dw

dk

) = wDu +
uDw = uDw − Duw = 〈u,Dw〉 − 〈Du,w〉.
Proof of proposition 3. Since

λ1λ2 = |U | =
∣∣∣∣eik 0

0 e−ik

∣∣∣∣ |A| = |A| = eiθ , (A.1)

where θ is a constant, only depends on A, d(λ1λ2)

dk
= 0. This implies that λ1

dλ2
dk

+ dλ1
dk

λ2 = 0.

By (A.1), λ1 = λ2 eiθ and λ2 = λ1 eiθ . So, we have

λ2 eiθ dλ2

dk
= −dλ1

dk
λ1 eiθ .

Therefore we obtain

λ1Dλ1 = −λ2Dλ2. (A.2)

Proof of proposition 4. For simplicity, in this proof we temporarily assign the symbols v1

and v2 to the two components of the eigenvector v. Since λ is an eigenvalue of U, v is a
corresponding unit eigenvector,

Uv = U

(
v1

v2

)
= λ

(
v1

v2

)
=

(
λv1

λv2

)
.

This implies the following equations:

eikav1 + eikbv2 = λv1 (A.3)

and

e−ikcv1 + e−ik dv2 = λv2. (A.4)

Differentiating both sides of the above equations with respect to k, results in the two equations:

ieikav1 + eika
dv1

dk
+ ieikbv2 + eikb

dv2

dk
= dλ

dk
v1 + λ

dv1

dk
(A.5)

−ie−ikcv1 + e−ikc
dv1

dk
− ie−ikdv2 + e−ikd

dv2

dk
= dλ

dk
v2 + λ

dv2

dk
. (A.6)

8
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Multiplying equation (A.5) by λv1, we get

λv1

(
ieikav1 + eika

dv1

dk
+ ieikbv2 + eikb

dv2

dk

)
= λ

dλ

dk
v1v1 +

dv1

dk
v1. (A.7)

Multiplying equation (A.6) by λv2, we get

λv2

(
−ie−ikcv1 + e−ikc

dv1

dk
− ie−ik dv2 + e−ikd

dv2

dk

)
= λ

dλ

dk
v2v2 +

dv2

dk
v2. (A.8)

Adding (A.7) to (A.8) and solving for λ dλ
dk

yields

λ
dλ

dk
= λv1

(
ieikav1 + eika

dv1

dk
+ ieikbv2 + eikb

dv2

dk

)

+ λv2

(
−ie−ikcv1 + e−ikc

dv1

dk
− ie−ikdv2 + e−ikd

dv2

dk

)

−
(

dv1

dk
v1 +

dv2

dk
v2

)
. (A.9)

Substituting the left-hand sides of (A.3) and (A.4) for λv1 and λv2, respectively, in the above
equations, we obtain

λ
dλ

dk
= i|a|2v1v1 + |a|2v1

dv1

dk
+ iabv1v2 + abv1

dv2

dk
+ iabv1v2

+ ab
dv1

dk
v2 + i|b|2v2v2 + |b|2v2

dv2

dk
− i|c|2v1v1 + |c|2v1

dv1

dk

− icdv1v2 + cdv1
dv2

dk
− icdv1v2 + cd

dv1

dk
v2

− i|d|2v2v2 + |d|2v2
dv2

dk
−

(
v1

dv1

dk
+ v2

dv2

dk

)
. (A.10)

From the definition of a unitary matrix, the following identities are easily deduced:

|a|2 + |b|2 = 1, |a|2 + |c|2 = 1, |b|2 + |d|2 = 1,

|c|2 + |d|2 = 1, ab + cd = 0 and ac + bd = 0.
(A.11)

Applying the identities in (A.11) to the right-hand side of (A.10) and simplifying it, we
conclude that

λ
dλ

dk
= 2i(|a|2v1v1 + |b|2v2v2 + 2 Re(abv1v2)) − i. (A.12)

By (A.3), we have

λv1λv1 = v1v1 = |a|2v1v1 + |b|2v2v2 + 2 Re(abv1v2). (A.13)

Combining (A.12) and (A.13) together, leads to the desired result

λDλ = 2|〈v, ε1〉|2 − 1.

The proof is complete.

Proof of proposition 5. (1) (i) ⇒ (ii). If λDλ ≡ 0, then λ1 and λ2 are independent of k.
Since both λ1 and λ2 are solutions of the equation,

λ2 − [(a + d) cos k + (a − d)i sin k]λ + ad − bc = 0, (A.14)

we derive that a + d = 0 and a − d = 0, so a = d = 0. Thus we have

A =
(

0 b

c 0

)
.
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Both (ii) ⇒ (iii) and (iii) ⇒ (i) are obvious.

Proof of proposition 6. (i) ⇒ (ii). The λDλ ≡ 1 is equivalent to Dλ ≡ λ, which exactly is
dλ
dk

= iλ. This gives that λ(k) = ei(k+r) for some r ∈ [0, 2π). Since λ1 · λ2 = eiθ , λ1 = eik · eir

and λ2 = e−ik · ei(θ−r).
Both λ1 and λ2 are the solutions of the equation

λ2 − λ(eika + e−ikd) + ad − bc = 0, (A.15)

hence λ1 + λ2 = eikeir + e−ikei(θ−r) = eika + e−ikd, which implies that a = eir and d = ei(θ−r).
Due to that fact that A is unitary, we further deduce that b = 0 and c = 0. So we have

A =
(

a 0
0 d

)
.

Similarly, we can prove it for the case of λDλ ≡ −1.
Both (ii) ⇒ (iii) and (iii) ⇒ (i) are evident. The proof is complete.

Proof of proposition 7. Recall that the tth time evolution is

ψt = Utψ0 = λt
1〈v1, ψ0〉v1 + λt

2〈v2, ψ0〉v2.

Performing the position operator D = −id/dk in k-space on both sides of the above
equation, it becomes

Dψt =
2∑

j=1

(
tλt−1

j Dλj 〈vj , ψ0〉vj + λt
jD〈vj , ψ0〉vj + λt

j 〈vj , ψ0〉Dvj

)
.

By appealing to corollary 1, propositions 3 and 4, we give a closed-form expression for
the quantity

〈ψt,Dψt 〉 = tλ1Dλ1|〈v1, ψ0〉|2 + D〈v1, ψ0〉〈v1, ψ0〉 + |〈v1, ψ0〉|2〈v1,Dv1〉
+ (λ1)

tλt
2〈v1, ψ0〉〈v2, ψ0〉〈v1,Dv2〉 + (λ2)

t 〈v2, ψ0〉λt
1〈v1, ψ0〉〈v2,Dv1〉

+ tλ2Dλ2|〈v2, ψ0〉|2 + 〈v2, ψ0〉D〈v2, ψ0〉 + |〈v2, ψ0〉|2〈v2,Dv2〉
= tλ1Dλ1(|〈v1, ψ0〉|2 − |〈v2, ψ0〉|2)

+ (|〈v1, ψ0〉|2〈v1,Dv1〉 + |〈v2, ψ0〉|2〈v2,Dv2〉)
+ (λ1)

tλt
2〈v1, ψ0〉〈v2, ψ0〉〈v1,Dv2〉 + (λ2)

tλt
1〈v2, ψ0〉〈v1, ψ0〉〈v2,Dv1〉

+ (D〈v1, ψ0〉〈v1, ψ0〉 + D〈v2, ψ0〉〈v2, ψ0〉)
= tλ1Dλ1(|〈v1, ψ0〉|2 − |〈v2, ψ0〉|2)

+ 2 Re
{[

λt
1(λ2)

t − 1
]〈v2, ψ0〉〈v1, ψ0〉〈v2,Dv1〉

}
= tλ1Dλ1(2|〈v1, ψ0〉|2 − 1) + 2 Re

{[
λt

1(λ2)
t − 1

]〈v2, ψ0〉〈v1, ψ0〉〈v2,Dv1〉
}

= tλ1Dλ1
[
(2|α1|2 − 1)λ1Dλ1 + 4 Re

(
α1α2v

1
1v

2
1

)]
+ 2 Re

{[
λt

1(λ2)
t − 1

]〈v2, ψ0〉〈v1, ψ0〉〈v2,Dv1〉
}
. (A.16)

This proof is done by noting that E(Xt) = 〈ψt,Xψt 〉 = ∫ 2π

0 〈ψt(k),Dψt(k)〉 dk
2π

from the last
section.

Proof of theorem 1. Note that σ 2(Xt ) = E
(
X2

t

) − [E(Xt)]2. By propositions 4 and 8,
the maximum leading term of E

(
X2

t

)
is t2, and the leading term of E

(
X2

t

)
is t2 if and only

if |λ1Dλ1| ≡ 1. According to proposition 6, |λ1Dλ1| ≡ 1 if and only if A is diagonal,
this implies that the second component of the eigenvector v1 is zero, then by proposition 7,

10
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σ(Xt) = t (2|α1|2 − 1) + O(1). Obviously, σ(Xt) = O(1) if and only if |α1| =
√

2
2 . A

justification of the second statement in this theorem follows propositions 5, 7 and 8.

Proof of corollary 3. To justify them, it is easy to see σ 2(Xt ) = O(t) if and only if∫ 2π

0 (λ1Dλ1)
2 dk

2π
= 0 or

∫ 2π

0 (λ1Dλ1)
2 dk

2π
= 1. These are equivalent to λ1Dλ1 ≡ 0 or

λ1Dλ1 ≡ ±1 since the quantity λ1Dλ1 is continuous and bounded by 1 according to
proposition 4. Appealing to propositions 5 and 6, we know λ1Dλ1 ≡ 0 if and only if
this quantum random walk remains confined, and λ1Dλ1 ≡ 1 if and only if this quantum
random walk always moves to the right on the line.
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